

1 **Genome sequence of *Hydrangea macrophylla* and its application in analysis of the double**
2 **flower phenotype**

3

4 **Authors**

5 Nashima K^{*1}, Shirasawa K^{*2}, Ghelfi A², Hirakawa H², Isobe S², Suyama T³, Wada T³, Kurokura T⁴,
6 Uemachi T⁵, Azuma M¹, Akutsu M⁶, Kodama M⁶, Nakazawa Y⁶, Namai K⁶

7

8 1. College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-
9 0880 Japan

10 2. Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba, 292-0813 Japan

11 3. Fukuoka Agriculture and Forestry Research Center, Yoshiki 587, Chikushino, Fukuoka, 818-8549
12 Japan

13 4. Faculty of Agriculture, Utsunomiya University, Mine 350, Utsunomiya, Tochigi, 321-8505 Japan

14 5. School of Environmental Science, University of Shiga Prefecture, Hassakacho 2500, Hikone,
15 Shiga, 522-0057 Japan

16 6. Tochigi Prefectural Agricultural Experimental Station, Kawarayacho 1080, Utsunomiya, Tochigi,
17 320-0002 Japan

18

19 *equally contributed as first author

20 Corresponding author: Nashima K

21 College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880
22 Japan

23 Tel: +81-466-84-3507

24 Mail: nashima.kenji@nihon-u.ac.jp

25 **Abstract**

26 Owing to its high ornamental value, the double flower phenotype of hydrangea (*Hydrangea*
27 *macrophylla*) is one of its most important traits. In this study, genome sequence information was
28 obtained to explore effective DNA markers and the causative genes for double flower production in
29 hydrangea. Single molecule real-time sequencing data followed by a HiC analysis was employed. The
30 resultant haplotype-phased sequences consisted of 3,779 sequences (2.256 Gb in length and N50 of
31 1.5 Mb), and 18 pseudomolecules comprising 1.08 Gb scaffold sequences along with a high-density
32 SNP genetic linkage map. Using the genome sequence data obtained from two breeding populations,
33 the SNPs linked to double flower loci (D_{jo} and D_{su}), were discovered for each breeding population.
34 DNA markers J01 linked to D_{jo} and S01 linked to D_{su} were developed, and these could be used
35 successfully to distinguish the recessive double flower allele for each locus respectively. The *LEAFY*
36 gene was suggested as the causative gene for D_{su} , since frameshift was specifically observed in double
37 flower accession with d_{su} . The genome information obtained in this study will facilitate a wide range
38 of genomic studies on hydrangea in the future.

39

40 Keywords:

41 Hydrangea, double flower, de novo genome sequencing, DNA marker

42

43

44

45

46

47

48

49 **1. Introduction**

50 *Hydrangea macrophylla* (Thunb.) Ser., commonly known as hydrangea, originated in Japan,
51 and since it is the place of origin, there are rich genetic resources for this plant in Japan. Wild
52 hydrangea accessions with superior characteristics have been bred to create attractive cultivars, and it
53 has a long history of use as an ornamental garden plant in temperate regions. There are both decorative
54 and non-decorative flowers in an inflorescence. Decorative flowers have large ornamental sepals that
55 attract pollinators, whereas non-decorative flowers have inconspicuous perianths that instead play a
56 major role in seed production¹⁻³. In hydrangea, there are two types of decorative flower phenotype:
57 single flower and double flower. Single flowers generally have four petaloid sepals per decorative
58 flower, while this number in double flowers is approximately fourteen. Double flowers do not have
59 stamens or petals⁴. Therefore, petals and stamens would be converted to petaloid sepals since number
60 of petaloid sepals are increased and stamens and petals are lost. Because of their high ornamental value,
61 producing double flower is an important breeding target in hydrangea cultivation.

62 To obtain double flower progenies, the double flower cultivars ‘Sumidanohanabi’ (Figure
63 1A) and ‘Jogasaki’ (Figure 1B) were crossbred in Japan⁴. Previous studies have suggested that double
64 flower phenotype is a recessive characteristic controlled by a single major gene^{4,5}. Suyama et al.⁴
65 found that crosses between the progeny of ‘Sumidanohanabi’ and the progeny of ‘Jogasaki’ produced
66 only single flower descendants. Thus, it was also suggested that genes controlling the double flower
67 phenotype are different⁴. While Suyama et al.⁴ suggested that a single locus with different double
68 flower alleles controls the phenotype, Waki et al.⁵ speculated that two different loci control double
69 flower production individually. Therefore, it is not clear whether a single locus or two loci control the
70 phenotype. We term the double flower locus D_{su} as the locus controlling the double flower phenotype
71 of ‘Sumidanohanabi’ and the double flower locus D_{jo} as the locus controlling the double flower
72 phenotype of ‘Jogasaki.’ Waki et al.⁵ identified D_{su} on the genetic linkage map. They also found that

73 the DNA marker STAB045 was the nearest marker to D_{su} , and that STAB045 could help in
74 distinguishing flower phenotype with a 98.6% fitting ratio⁵. Contrarily, D_{jo} has not been identified,
75 and the DNA marker linked to D_{jo} has not been developed. It is still not known whether D_{jo} and D_{su}
76 are at the same loci.

77 The mechanisms and genes controlling double flower phenotype in hydrangea have not been
78 clarified. Waki et al.⁵ hypothesized that the mutation of C-class genes could be associated with the
79 double flower phenotype of ‘Sumidanohanabi’, since the C-class gene mutant of *Arabidopsis thaliana*
80 and C-class gene-repressed petunias produce double flowers⁶. However, the double flower phenotype
81 of hydrangea is morphologically different from that of *A. thaliana* and petunia—petals and stamens
82 would be converted to petaloid sepals, while stamens converted to petals in *A. thaliana* and petunia.
83 This suggests that the genes controlling double flower production in hydrangea are different from
84 corresponding genes in other plant species. Identification of the genes controlling double flower
85 production in hydrangea could reveal novel regulatory mechanisms of flower development.

86 Genomic information is essential for DNA marker development and identification of genes
87 controlling specific phenotypes. However, no reference genome sequence is publicly available for
88 hydrangea so far. Although a genome assembly of hydrangea (1.6 Gb) using only short-read data has
89 been reported⁷, the resultant assembly is so fragmented that it comprises 1,519,429 contigs with an
90 N50 size of 2,447 bp and has not been disclosed. Improved, advanced long-read technologies and
91 bioinformatics methods would make it possible to determine the sequences of complex genomes. An
92 assembly strategy for single molecule real-time sequencing data followed by a HiC analysis has been
93 developed to generate haplotype-phased sequences in heterozygous regions of diploid genomes⁸.
94 Genome sequences at the chromosome level could be obtained with a HiC clustering analysis⁹ as well
95 as with a genetic linkage analysis¹⁰. Such genomic sequence will provide basic information to identify
96 genes and DNA markers of interest, and to discover allelic sequence variations. In this study, we

97 constructed the genomic DNA sequence, obtained SNPs information, and performed gene prediction.

98 We also developed DNA markers linked to D_{jo} using SNP information obtained by double digest
99 restriction site associated DNA sequence (ddRAD-Seq) analysis of breeding population 12GM1,
100 which segregated double flower phenotypes of D_{jo} . In addition, we attempted to identify the causative
101 genes for D_{jo} and D_{su} .

102

103 **2. Materials and Methods**

104 **2.1. De novo assembly of the hydrangea genome**

105 For genomic DNA sequencing, *H. macrophylla* 'Aogashima-1,' collected from Aogashima
106 island of the Izu Islands in Tokyo Prefecture, Japan, was used. Genomic DNA was extracted from the
107 young leaves with Genomic-Tip (Qiagen, Hilden, Germany). First, we constructed a sequencing
108 library (insert size of 500 bp) with TruSeq DNA PCR-Free Library Prep Kit (Illumina, San Diego, CA,
109 USA) to sequence on HiSeqX (Illumina). The size of the 'Aogashima-1' genome was estimated using
110 Jellyfish v2.1.4¹¹. After removing adapter sequences and trimming low-quality reads, high-quality
111 reads were assembled using Platanus¹². The resultant sequences were designated HMA_r0.1.
112 Completeness of the assembly was assessed with sets of BUSCO v.1.1b¹³.

113 Next, a SMRT library was constructed with SMRTbell Express Template Prep Kit 2.0
114 (PacBio, Menlo Park, CA, USA) in accordance with the manufacture's protocol and sequenced with
115 SMRT Cell v2.1 on a Sequel System (PacBio). The sequence reads were assembled using FALCON
116 v.1.8.8¹⁴ to generate primary contig sequences and to associate contigs representing alternative alleles.
117 Haplotype - resolved assemblies (i.e. haplotigs) were generated using FALCON-Unzip v.1.8.8¹⁴.
118 Potential sequence errors in the contigs were corrected twice with ARROW v.2.2.1 implemented in
119 SMRT Link v.5.0 (PacBio) followed by one polishing with Pilon¹⁵. Subsequently, a HiC library was
120 constructed with Proximo Hi-C (Plant) Kit (Phase Genomics, Seattle, WA, USA) and sequenced on

121 HiSeqX (Illumina). After removing adapter sequences and trimming low-quality reads, high-quality
122 HiC reads were used to generate two haplotype-phased sequences from the primary contigs and
123 haplotig sequences with FALCON-Phase⁸.

124 To validate the accuracy of the sequences, we developed a genetic map based on SNPs,
125 which were from a ddRAD-Seq analysis on an F2 mapping population (n = 147), namely 12GM1,
126 maintained at the Fukuoka Agriculture and Forestry Research Center, Japan. The 12GM1 population
127 was generated from a cross between ‘Posy Bouquet Grace’ (Figure 1C) and ‘Blue Picotee Manasu’
128 (Figure 1D). Genomic DNA was extracted from the leaves with DNeasy Plant Mini Kit (Qiagen). A
129 ddRAD-Seq library was constructed as described in Shirasawa et al.¹⁶ and sequenced with HiSeq4000.
130 Sequence reads were processed as described by Shirasawa et al.¹⁶ and mapped on the HMA_r1.2 as a
131 reference. From the mapping alignment, high-confidence biallelic SNPs were obtained with the
132 following filtering options: --minDP 5 --minQ 10 --max-missing 0.5. The genetic map was constructed
133 with Lep-Map3¹⁷.

134 Potential mis-jointed points in the phase 0 and 1 sequences of HMA_r1.2 were cut and re-
135 joined, based on the marker order in the genetic map, for which we employed ALLMAPS¹⁸. The
136 resultant sequences were named HMA_r1.3.pmol, as two haplotype-phased pseudomolecule
137 sequences of the ‘Aogashima-1’ genome. Sequences that were unassigned to the genetic map were
138 connected and termed chromosome 0.

139

140 **2.2 Gene prediction**

141 For gene prediction, we performed Iso-Seq analysis. Total RNA was extracted from 12
142 samples of ‘Aogashima-1’: flower buds (2 stages); decorative flowers (2 stages); colored and colorless
143 non-decorative flowers; fruits; shoots; roots; buds, and one-day light-intercepted leaves and buds. In
144 addition, the 29 samples listed in Supplementary Table S1 were included. Iso-Seq libraries were

145 prepared with the manufacture's Iso-Seq Express Template Preparation protocol, and sequenced on a
146 Sequel System (PacBio). The raw reads obtained were treated with ISO-Seq3 pipeline, implemented
147 in SMRT Link v.5.0 (PacBio) to generate full-length, high-quality consensus isoforms. In parallel,
148 RNA-Seq data was also obtained from the 16 samples listed in Supplementary Table S1. Total RNA
149 extracted from the samples was converted into cDNA and sequenced on HiSeq2000, Hiseq2500
150 (Illumina), and NovaSeq6000 (Illumina). The Iso-Seq isoform sequences and the RNA-Seq short-
151 reads were employed for gene prediction.

152 To identify putative protein-encoding genes in the genome assemblies, ab-initio-, evidence-,
153 and homology-based gene prediction methods were used. For this prediction, unigene sets generated
154 from 1) the Iso-Seq isoforms; 2) de novo assembly of the RNA-Seq short-reads with Trinity-v2.4.0¹⁹;
155 3) peptide sequences predicted from the genomes of *Arabidopsis thaliana*, *Arachis hypogaea*,
156 *Cannabis sativa*, *Capsicum annuum*, *Cucumis sativus*, *Populus trichocarpa*, and *Quercus lobata*; and
157 4) *ab-initio* genes, were predicted with Augustus-v3.3.1²⁰. The unigene sequences were aligned onto
158 the genome assembly with BLAT²¹ and genome positions of the genes were listed in general feature
159 format version 3 with blat2gff.pl (<https://github.com/vikas0633/perl/blob/master/blat2gff.pl>). Gene
160 annotation was performed with Hayai-annotation Plants²². Completeness of the gene prediction was
161 assessed with sets of BUSCO v4.0.6¹³.

162

163 **2.3 Detection of SNPs linked to the double flower phenotype**

164 For identification of SNPs linked to double flower loci D_{jo} and D_{su} , ddRAD-Seq data
165 analysis was performed. ddRAD-Seq data of the 12GM1 population described above was used to
166 identify D_{jo} . For identification of SNPs linked to double flower locus D_{su} , KF population⁵—93 F2
167 specimens of 'Kirakiraboshi' (Figure 1E) and 'Frau Yoshimi' (Figure 1F)—were used for ddRAD-Seq
168 analysis. The KF population was maintained at Tochigi Prefectural Agricultural Experimental Station,

169 Japan. ddRAD-Seq analysis of the KF population was performed using the same method used for the
170 12GM1 population.

171 ddRAD-Seq data of the 12GM1 and KF populations were processed as follows: Low-quality
172 sequences were removed and adapters were trimmed using Trimmomatic-0.36²³ (LEADING:10,
173 TRAILING:10, SLIDINGWINDOW:4:15, MINLEN:51). BWA-MEM (version 0.7.15-r1140) was
174 used for mapping onto genome sequence. The resultant sequence alignment/map format (SAM) files
175 were converted to binary sequence alignment/map format files and subjected to SNP calling using the
176 mpileup option of SAMtools²⁴ (version 1.4.1) and the view option of BCFtools (parameter -vcg). If
177 the DP of called SNP in individuals was under 5%, the genotype was treated as missing. SNPs with
178 5% or more of missing genotype were filtered out. Each SNP was evaluated, fitting ratios with the
179 flower phenotype.

180

181 **2.4 DNA marker development and analysis for D_{jo}**

182 A CAPS marker was designed based on SNP (Scaffold:0008F-2, position: 780104) that was
183 completely linked to the double flower locus D_{jo} . Primers were designed using Primer3²⁵ under
184 conditions with product size ranging from 150 to 350 bp, primer size from 18 to 27 bp, and primer
185 TM from 57 to 63°C. Primer sequences of the designed CAPS marker named J01 were: Forward: 5'-
186 CTGGCAGATTCCCTCTGAC-3' and Reverse: 5'-TATTCCTTGGGGAGGCTCT-3'. PCR assays
187 were done in a total volume of 10 μ L, containing 5 μ L of GoTaq Master Mix (Promega, Madison, WI,
188 USA), 1 mM each of forward and reverse primer, and 5 ng of template DNA. The PCR conditions
189 were 94°C for 2 min, 35 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min, and
190 extension at 72°C for 1 min; and a final extension step at 72°C for 3 min. Then, restriction enzyme
191 assay was done in a total volume of 10 μ L, containing 5 μ L of PCR product, ten units of restriction
192 enzyme TaqI (New England Biolabs, Ipswich, MA, USA), and 1 μ L of cut smart buffer. Restriction

193 enzyme assay was performed at 65°C for 3 h. The restriction assay product was stained with 1x
194 GRRED (Biocraft, Tokyo, Japan) and separated in 1.5% (w/v) agarose gel in TAE buffer. Designed
195 CAPS marker J01 was applied to the 12GM1 population, 14GT77 population (64 F2 specimens of
196 ‘Posy Bouquet Grace’ × ‘Chibori’) and the 15IJP1 population (98 F1 specimens of ‘Izunohana’ ×
197 03JP1) that segregate the double flower locus *D_{jo}*.

198

199 **2.5 Resequencing and comparison of LEAFY gene sequence and DNA marker development**

200 To compare sequences, resequencing of genomic DNA was performed for accessions of
201 ‘Kirakiraboshi,’ ‘Frau Yoshimi,’ ‘Posy Bouquet Grace,’ and ‘Blue Picotee Manaslu.’ Sequencing
202 libraries (insert size of 500 bp) for the four lines were constructed with TruSeq DNA PCR-Free Library
203 Prep Kit (Illumina) to sequence on a HiSeqX (Illumina). From the sequence reads obtained, low-
204 quality bases were deleted with PRINSEQ v.0.20.4²⁶ and adaptor sequences were trimmed with fastx
205 clipper (parameter, -a AGATCGGAAGAGC) in FASTX-Toolkit v.0.0.13
206 (http://hannonlab.cshl.edu/fastx_toolkit). High-quality reads were aligned on the HMA_r1.2 with
207 Bowtie2²⁷ v.2.2.3 to detect sequence variant candidates by with the mpileup command in SAMtools
208 v.0.1.19²⁴. High-confidence variants were selected using VCFtools²⁹ v.0.1.12b with parameters of --
209 minDP 10, --maxDP 100, --minQ 999, --max-missing 1.

210 For comparison of *LEAFY* (*LFY*) sequence in ‘Kirakiraboshi,’ ‘Frau Yoshimi,’ ‘Posy
211 Bouquet Grace,’ and ‘Blue Picotee Manaslu,’ BLAST analysis using genomic sequence of *LFY*
212 (Scaffold 0577F, position 678200-684639) as query, and genomic DNA sequence of each cultivar as
213 database, was performed to confirm detected sequence variants. These data analyses were performed
214 using CLC main workbench (Qiagen). INDEL marker S01 that amplifies the second intron of *LFY*,
215 was designed by visual inspection (Forward: 5'-CATCATTAAATAGTGGTGACAG-3', Reverse: 5'-
216 CACACATGAATTAGTAGCTC-3'). The PCR conditions were 94°C for 2 min, 35 cycles of

217 denaturation at 94°C for 1 min, annealing at 55°C for 1 min, extension at 72°C for 1 min; and a final
218 extension step at 72°C for 3 min. The PCR product was stained with 1x GRRED (Biocraft) and
219 separated in 2.5% (w/v) agarose gel in TAE buffer.

220

221 **2.6 Cloning and sequence determination of LFY gene of ‘Kirakiraboshi’ and ‘Frau Yoshimi’**

222 Total RNA was isolated from the flower buds of ‘Kirakiraboshi,’ and ‘Frau Yoshimi’ using RNAiso
223 Plus (TaKaRa, Japan), and reverse transcribed using PrimeScript II 1st strand cDNA Synthesis Kit
224 (TaKaRa, Japan). The sequence of the *LFY* gene was amplified by PCR in 50-μL reaction mixture by
225 using TaKaRa Ex Taq Hot Start Version (TaKaRa Bio, Shiga, Japan) and the *LFY* specific primer
226 (Forward: 5'-ATGGCTCCACTACCTCCACC-3' and Reverse: 5'-CTAACACCCCTCTAAAAGCAG-
227 3'). These PCR products were purified, and inserted into a pMD20-T vector using the Mighty TA-
228 cloning kit (TaKaRa Bio). The sequence of *LFY* coding sequence (CDS) in pMD20-T vector was
229 analyzed by 3130xl DNA sequencer (Applied Biosystems, Foster City, CA, USA). Sequence
230 alignments were obtained by using CLC main workbench (Qiagen).

231

232 **2.7 DNA marker assessment across hydrangea accessions**

233 For assessment of DNA markers for the double flower phenotype, 35 *H. macrophylla*
234 accessions were used. Genotyping for J01 was performed as described above. Genotyping for S01 was
235 performed by fragment analysis as follows. PCR amplification was performed in a 10-μL reaction
236 mixture containing 5 μL of GoTaq Master Mix (Promega), 5 pmol FAM-labeled universal primer (5'
237 - FAM-gctacggactgacctcgac -3'), 2.5 pmol forward primer with universal adapter sequence (5' -
238 gctacggactgacctcgacCATCATTAATAGTGGTGACAG -3'), 5 pmol reverse primer, and 5 ng of
239 template DNA. DNA was amplified in 35 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 2
240 min; and a final extension of 5 min at 72°C. The amplified PCR products were separated and detected

241 in a PRISM 3130xl DNA sequencer (Applied Biosystems, USA). The sizes of the amplified bands
242 were scored against internal-standard DNA (400HD-ROX, Applied Biosystems, USA) by
243 GeneMapper software (Applied Biosystems, USA).

244

245 **3. Results and Discussion**

246 **3.1 Draft genome assembly with long-read and HiC technologies**

247 The size of the hydrangea genome was estimated by k-mer-distribution analysis with the short-read of
248 132.3 Gb data. The resultant distribution pattern indicated two peaks, representing homozygous (left
249 peak) and heterozygous (right peak) genomes, respectively (Figure 2). The haploid genome of
250 hydrangea was estimated to be 2.2 Gb in size. The short reads were assembled into 612,846 scaffold
251 sequences. The total length of the resultant scaffolds, i.e. HMA_r0.1, was 1.7 Gb with an N50 length
252 of 9.1 kb (Supplementary Table S2). Only 72.2% of complete single copy orthologues in plant
253 genomes were identified in a BUSCO analysis (Supplementary Table S2).

254 Next, we employed long sequence technology to extend the sequence contiguity and to
255 improve the genome coverage. A total of 106.9 Gb of reads (49.4×) with an N50 read length of 28.8
256 kb was obtained from 14 SMRT Cells. The long-reads were assembled, followed by sequence error
257 corrections into 15,791 contigs consisting of 3,779 primary contigs (2.178 Gb in length and N50 of
258 1.4 Mb), and 12,012 haplotig sequences (1.436 Gb in length and N50 of 184 kb). To obtain two
259 haplotype-phased complete-length sequences, 697 M reads of HiC data (105.3 Gb) were obtained and
260 subjected to FALCON-Phase. The resultant haplotype-phased sequences consisted of 3,779 sequences
261 (2.256 Gb in length and N50 of 1.5 Mb) for “phase 0,” and 3,779 sequences (2.227 Gb in length, and
262 N50 of 1.4 Mb) for “phase 1.”

263

264 **3.2 Pseudomolecule sequences based on genetic mapping**

265 To detect potential errors in the assembly and to assign the contig sequences onto the hydrangea
266 chromosomes, we established an F2 genetic map based on SNPs derived from a ddRAD-Seq
267 technology. Approximately 1.8 million high-quality ddRAD-Seq reads per sample were obtained from
268 the mapping population and mapped to either of the two phased sequences with alignment rates of
269 88.4% and 88.7%, respectively. A set of SNPs detected from the alignments were classified into 18
270 groups and ordered to construct two genetic maps for the two phased sequences (2,849.3 cM in length
271 with 3,980 SNPs, and 2,944.5 cM in length with 4,071 SNPs). The nomenclature of the linkage groups
272 was named in accordance with the previous genetic map based on SSRs⁵. The phased sequences were
273 aligned on each genetic map to establish haplotype-phased, chromosome-level pseudomolecule
274 sequences. During this process, one contig was cut due to possible mis-assembly. The resultant
275 sequences for phase 0 had 730 contigs with a total length of 1,078 Mb and the other for phase 1 had
276 743 contigs spanning 1,076 Mb.

277

278 **3.3. Transcriptome analysis followed by gene prediction**

279 In the Iso-Seq analysis, Circular Consensus Sequence (CCS) reads were generated from the raw
280 sequence reads. The CCS reads were classified in full-length and non-full length reads and the full-
281 length reads were clustered to produce consensus isoforms. In total, 116,634 high-quality isoforms
282 were used for gene prediction. In the RNA-Seq analysis, on the contrary, a total of 80.7 Gb reads were
283 obtained and assembled into 12,265 unigenes. The high-quality isoforms and unigenes together with
284 gene sequences predicted from the *Arabidopsis thaliana*, *Arachis hypogaea*, *Cannabis sativa*,
285 *Capsicum annuum*, *Cucumis sativus*, *Populus trichocarpa*, and *Quercus lobata* genomes were aligned
286 onto the assembly sequence of the hydrangea genome. By adding ab-initio on genes, 32,205 and
287 32,222 putative protein-encoding genes were predicted from the phase 0 and phase 1 sequences,

288 respectively. This gene set included 91.4% complete BUSCOs. Out of the 10,108 genes, 16,725, and
289 21,985 were assigned to Gene Ontology slim terms in the biological process, cellular component, and
290 molecular function categories, respectively. Furthermore, 4,271 genes had assigned enzyme
291 commission numbers.

292

293 **3.4 Identification of SNPs tightly linked to double flower phenotype**

294 To identify SNPs tightly linked to the double flower phenotype of 'Jogasaki,' ddRAD-Seq
295 analysis was performed on the 12GM1 population, which segregates the double flower phenotype of
296 'Jogasaki.' As a result, 14,006 of SNPs were called by ddRAD-Seq analysis of the 12GM1 population.
297 In this population, the double flower phenotype was expected when the plant was homozygous for the
298 'Posy Bouquet Grace' genotype, and the single flower phenotype was expected when the plant was
299 homozygous for 'Blue Picotee Manaslu' or was heterozygous. Each SNP was tested for its fitting rate
300 to this model. As a result, ten SNPs were found to have more than a 95% fitting rate, and six SNPs
301 were completely co-segregated with flower phenotype (Table 1).

302 CAPS marker J01 was developed based on SNP at scaffold 0008F-2_780104. J01 CAPS
303 marker amplified 167 bp of fragment by PCR, and digestion with Taq I restriction enzyme generated
304 50 bp and 117 bp fragments in the double flower allele (Figure 3). J01 marker was fitted with flower
305 phenotype at 99.3% in the 15IJP1 and 14GT77 populations, which segregated the double flower
306 phenotype of 'Jogasaki' (Supplementary Table S3, S4). This indicated that J01 marker was tightly
307 linked to the *D_{jo}* locus. Thus, *D_{jo}* is suggested to be located adjacent to J01, which is located at position
308 46,326,384 in CHR17, (Figure 4).

309 For identification of SNPs linked to the double flower phenotype of 'Sumidanohanabi,' the
310 KF population that segregates the double flower phenotype derived from 'Sumidanohanabi' were used.
311 First, we tried to find co-segregated scaffolds with the double flower phenotype by ddRAD-Seq

312 analysis of the KF population. As a result of ddRAD-Seq analysis, 15,102 of SNPs were called. In this
313 population, the double flower phenotype was expected when the plant was homozygous for the
314 ‘Kirakiraboshi’ genotype, and the single flower phenotype was expected when the plant was
315 homozygous for ‘Frau Yoshimi’ or was heterozygous. Each SNP was tested for its fitting rate to this
316 model. As a result, five SNPs on three scaffolds were found to have more than a 95% fitting rate with
317 the model (Table 2). Since SNPs on scaffold 3145F all had the same genotype across the KF population,
318 three loci—on scaffold 0577F, 3145F, 0109F—were detected. According to genotypes of the KF
319 population, these three loci were tightly linked within 5 cM; 0109F (0 cM) - 3145F (3.9 cM) - 0577F
320 (5.0 cM). Since the SNP at position 868569 in 0109F was found at the position 57,436,162 in CHR04,
321 locus D_{su} , which controls the double flower phenotype of ‘Sumidanohanabi,’ was suggested to be
322 located on terminal of CHR04 (Figure 4).

323

324 **3.5 Prediction of genes controlling double flower**

325 To find the gene controlling D_{su} and D_{jo} , we searched the homeotic genes on scaffolds shown
326 in Table 1 and Table 2. We did not find any notable homeotic gene controlling flower phenotype for
327 D_{jo} . For D_{su} , the g182220 gene, which encoded a homeotic gene *LFY*, was found on scaffold 0577F.
328 To investigate the possibility that it was the causative gene for D_{su} , sequence variants on *LFY* genomic
329 sequence were searched to identify ‘Kirakiraboshi’ specific mutation, using resequencing data of
330 ‘Kirakiraboshi,’ ‘Frau Yoshimi,’ ‘Posy Bouquet Grace,’ and ‘Blue Picotee Manaslu.’ As a result, five
331 INDELs and six sequence variants were found as ‘Kirakiraboshi’ specific mutations (Figure 5).

332 Cloning and sequencing of *LFY* CDS was performed on ‘Kirakiraboshi’ and ‘Frau Yoshimi.’
333 From ‘Frau Yoshimi,’ a single CDS comprising three exons was obtained. From ‘Kirakiraboshi,’ two
334 CDSs with splice variants were obtained. While splicing 1 CDS resulted in three exons, splicing 2
335 CDS resulted in only two exons, corresponding to the first and third splice products of splicing 1 CDS

336 (Supplementary Figure S1). The deduced amino acid sequences were aligned using CDSs of ‘Frau
337 Yoshimi’ and ‘Kirakiraboshi,’ g182220 sequence, protein LFY of *Arabidopsis thaliana*, and protein
338 FLO of *Antirrhium majos*. While the deduced amino acid sequences of ‘Frau Yoshimi’ and g182220
339 showed sequence similarity in the entire region, frameshift occurred in the two CDSs obtained from
340 ‘Kirakiraboshi’ and the resulting products had no sequence similarity across the latter half (Figure 6).
341 Frameshift observed in splicing 1 CDS was due to one bp of DNA insertion in the second exon, at
342 position 1,931 (Figure N3A). On the contrary, frameshift observed in splicing 2 CDS was due to the
343 complete loss of the second exon (Figure 6).

344 To develop a DNA marker for distinguishing the *d_{su}* allele from the *D_{su}* alleles in the *LFY*
345 genomic sequence, we focused and designed a DNA marker on ‘Kirakiraboshi’ specific 14 bp deletion
346 at position 3,617 from initiation codon (Figure 5). We developed INDEL S01 marker amplified 236
347 bp fragment for the double flower allele of ‘Kirakiraboshi,’ and 250 bp and 280 bp fragments for the
348 single flower allele of ‘Frau Yoshimi’ (Figure 7A). Three types of alleles resulted from the presence
349 or absence of a 30 bp deletion at position 3,482 in addition to the 14 bp INDEL. These were both 30
350 bp and 14 bp deletions on the 236 bp allele, 30 bp deletion on the 250 bp allele, and no deletion on the
351 280 bp allele (Figure 7B).

352

353 **3.6 Genotyping of hydrangea accessions using J01 and S01 markers**

354 Since the J01 marker could distinguish *D_{jo}*/*d_{jo}* alleles and the S01 marker could distinguish
355 *D_{su}*/*d_{su}* alleles, a combined use of J01 and S01 DNA markers was expected to reveal the origin of the
356 double flower phenotype, *d_{jo}* or *d_{su}*, in various accessions. Therefore, DNA marker genotyping on *H.*
357 *macrophylla* accessions were performed using two DNA markers, J01 and S01. All tested double
358 flower accessions showed homozygous genotypes of J01 or S01; ten of the double flower accessions
359 were homozygous of 117_50 in J01, and four were homozygous of 236 in S01 (Table 3). Contrarily,

360 all single flower accessions showed other genotypes.

361 Previously, the double flower phenotype has been revealed to be controlled by a single locus
362 with the inheritance of single flower dominant and double flower recessive genes^{4,5}. It was also
363 suggested that genes controlling the double flower phenotype were different between ‘Jogasaki’ and
364 ‘Sumidanohanabi’ based on confirmation of the segregation ratio of crossed progenies⁴. Our study
365 revealed that the double flower phenotype of ‘Jogasaki’ was controlled by a single D_{jo} locus on CHR17,
366 and the double flower phenotype of ‘Sumidanohanabi’ was controlled by a single D_{su} locus on CHR04.
367 In addition, all double flower accessions showed homozygosity for the double flower allele at one
368 locus, D_{jo} or D_{su} . Contrarily, all single flowers have dominant single flower alleles on both D_{jo} and D_{su}
369 loci. This indicated that each locus independently controls flower phenotype.

370 Developed DNA markers J01 and S01 could successfully identify recessive double flower
371 alleles for D_{jo} and D_{su} , respectively. Both markers showed high fitting ratio with phenotype and were
372 applicable to the examined *H. macrophylla* accessions. The S01 marker is superior to the DNA marker
373 STAB045 linked to D_{su} and which was discovered by Waki et al.⁵ because the former has a wide range
374 of applicability. While the S01 marker genotype completely fitted with the phenotype in all tested
375 accessions, STAB045 did not (data not shown). Because both J01 and S01 showed a wide range of
376 applicability, it is advantageous to use them in combination to reveal the existence of the double flower
377 allele in *H. macrophylla* accessions. This information will help in selection of candidate parents with
378 heterozygous recessive double flower alleles to obtain double flower progenies. In addition, these
379 DNA markers should be useful in marker assisted selection (MAS) of double flower progenies. To
380 obtain double flower progenies, at least the paternal parent should be of the single flower phenotype
381 because very few or none at all pollen grains are produced in double flower individuals. In addition,
382 it requires approximately 2 years to confirm the flower phenotype from the time of crossing.
383 Identification of flower phenotype at the seedling stage by MAS would enable the discarding of single

384 flower individuals and allow the growth of double flower individuals. The developed DNA markers
385 should accelerate the breeding of double flower phenotypes.

386 In the genomic sequence of ‘Kirakiraboshi,’ an insertion was detected in the second exon of
387 the *LFY* gene. This insertion actually resulted in frameshift of cloned mRNA in both splice variants.
388 Therefore, it was speculated that the function of the *LFY* gene was suppressed or lost in ‘Kirakiraboshi’.
389 The *LFY* gene and its homologue *FLO* have been identified in many plants, such as *Arabidopsis*
390 *thaliana* and *Antirrhinum majus*, and are known as transcription factors for major flowering signals²⁹⁻
391 ³¹. Additionally, many types of phenotypes in *Arabidopsis lfy* mutants have been reported^{32,33}. In the
392 *lfy* strong phenotype, most organs are sepal-like, or mosaic sepal/carpels organs, and the sepal-like
393 organs are characteristic of wild-type caulin leaves³³. Therefore, the flowers of the *lfy* mutant
394 appeared to be double flowers that are formed from leaves or sepals. Additionally, a similar phenotype
395 has been reported in *LFY* homologue mutants or transgenic plants such as the *flo* mutant of
396 *Antirrhinum majus*³⁴, *uni* mutant of pea³⁵, and co-suppressed *NFL* transgenic plant of tobacco³⁷.
397 Therefore, generally, when the *LFY* gene function is lost, petal, stamens, and a carpel are likely to be
398 replaced by sepal-like organs. In decorative flowers of hydrangea, sepals show petaloid characteristics
399 including pigmentation and enlarged organ size. It is possible that sepal-like organs in decorative
400 flowers show petaloid characteristics and form double flowers. Therefore, we assumed that *LFY* is a
401 causative gene of the double flower phenotype of ‘Sumidanohanabi’.

402 However, there remain several unexplained observations in this study. The double flower of
403 ‘Kirakiraboshi’ did not exhibit the exact same phenotype of the *lfy* mutant. Generally, the flowers of
404 *lfy* or its orthologous gene mutants have only leaf-like or sepal-like organs that have chlorophyll,
405 stomata, and trichome, and these organs have almost no petal identity^{33,34}. When flowering signals in
406 *lfy* mutant were lost completely, floral organs were not fully formed³³⁻³⁵. In the double flowers of
407 ‘Kirakiraboshi’, the floral organs keep their petal identity, have papilla cells, and are pink or blue.

408 These phenotypes of ‘Kirakiraboshi’ might reflect partial remaining of LFY function. Additionally, it
409 has been reported that *lfy* mutants with an intermediate or weak phenotype sometimes develop petaloid
410 organs³³. According to the genomic sequence of *H. macrophylla*, no other *LFY* gene was observed. It
411 could be considered that the double flowers of ‘Kirakiraboshi’ were induced via partial repression of
412 the LFY function.

413 On the contrary, we could not find any candidate gene that controls the double flower
414 phenotype for the *D_{jo}* locus. One possible reason was that SNPs were not called in scaffold with
415 causative gene. In pseudomolecules, about half of the total scaffolds length was not included since
416 relevant SNPs were not called. Improvement of SNP density would be effective for discovering
417 additional scaffolds that are tightly linked to *D_{jo}*. Although candidate gene for *D_{jo}* could not be
418 identified from the linkage information, we predicted several candidate genes. In hydrangea, stamens
419 and petals were absent from decorative flowers of the double flower plant, and there was an increased
420 number of sepals⁴. Since causative genes should explain the changes in formation, the B-class genes
421 of the ABC model, *PI* and *AP3*, were predicted as candidate genes. In *A. thaliana*, the B-class gene *pi*
422 or *ap3* mutants showed an increase in the number of sepals converted from petals³⁷. If these genes
423 were mutated in hydrangea, an increase in sepals would be expected. In hydrangea, *HmPI*, *HmAP3*,
424 and *HmTM6* were identified as B-class genes^{38,39}. As *HmAP3* was located on CHR13, it was not
425 considered as a causative gene for *D_{jo}*. In this study, *HmPI* and *HmTM6* were not included in the
426 pseudomolecule. Ascertaining the loci of these genes might reveal the causative gene for *D_{jo}*.

427 In this study, we report DNA markers and possible causative genes for the double flower
428 phenotype observed in two hydrangea cultivars. For this analysis, we established a reference sequence
429 for the hydrangea genome using advanced sequencing technologies including the long-read
430 technology (PacBio) and the HiC method⁹, bioinformatics techniques for the diploid genome
431 assembly¹⁴, and haplotype phasing⁸. To the best of our knowledge, this is the first report on the

432 chromosome-level haplotype-phased sequences in hydrangea at the level of the species (*H.*
433 *macrophylla*), genus (*Hydrangea*), family (Hydrangeaceae), and order (Cornales). The genomic
434 information from this study based on NGS technology is a significant contribution to the genetics and
435 breeding of hydrangea and its relatives. It will serve to accelerate the knowledge base of the evolution
436 of floral characteristics in Hydrangeaceae.

437

438 **Acknowledgments:** We thank Ohama A, Ono M, Seki A and Kitagawa A (Nihon University) and
439 Sasamoto S, Watanabe A, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Minami C,
440 and Yamada M (Kazusa DNA Research Institute) for their technical help.

441

442 **Funding:** This study was partially supported by the Nihon University College of Bioresource Sciences
443 Research Grant for 2018, and by the JSPS KAKENHI Grant, Number JP18K14461.

444

445 **Supporting information:**

446 **Supplementary Table S1.** RNA samples used for Iso-Seq and RNA-Seq

447 **Supplementary Table S2.** Statistics of the genome sequences of *Hydrangea macrophylla*
448 ‘Aogashima-1’

449 **Supplementary Table S3.** J01 marker genotypes and double flower phenotypes of 15IJP1 population.

450 **Supplementary Table S4.** J01 marker genotypes and double flower phenotypes of 14GT77
451 population.

452 **Supplementary Figure S1.** Alignment of *LFY* genomic sequence and CDS.

453

454 **Data availability:**

455 The sequence reads are available from the DNA Data Bank of Japan (DDBJ) Sequence Read Archive

456 (DRA) under the accession numbers DRA010300, DRA010301, and DRA010302. The assembled
457 sequences are available from the BioProject accession number PRJDB10054. The genome information
458 is available at Plant GARDEN (<https://plantgarden.jp>).

459

460 **References**

461 1. Uemachi, T., Kato, Y., and Nishio, T. 2004, Comparison of decorative and non-decorative flowers
462 in *Hydrangea macrophylla* (Thunb.) Ser., *Sci. Hortic.*, 102, 325–334

463

464 2. Uemachi, T., Kurokawa, M., and Nishio, T. 2006, Comparison of inflorescence composition and
465 development in the lacecap and its sport, hortensia *Hydrangea macrophylla* (Thunb.) Ser., *J. Japan.*
466 *Soc. Hort. Sci.*, 75, 154–160.

467

468 3. Uemachi, T. and Okumura, A. 2012, The inheritance of inflorescence types in *Hydrangea*
469 *macrophylla*, *J. Japan. Soc. Hort. Sci.*, 81, 263–268.

470

471 4. Suyama, T., Tanigawa, T., Yamada, A. et al. 2015, Inheritance of the double-flowered trait in
472 decorative hydrangea flowers, *Hortic. J.*, 84, 253-260.

473

474 5. Waki, T., Kodama, M., Akutsu, M. et al. 2018, Development of DNA markers linked to double-
475 flower and hortensia traits in *Hydrangea macrophylla* (Thunb.) Ser., *Hortic J.*, 87, 264-273.

476

477 6. Heijmans, K., Ament, K., Rijkema, A.S. et al. 2012, Redefining C and D in the petunia ABC, *Plant*
478 *Cell*, 24, 2305-2317.

479

480 7. Tränkner, C., Krüger, J., Wanke, S., Naumann, J., Wenke, T. and Engel, F. 2019, Rapid identification
481 of inflorescence type markers by genotyping-by-sequencing of diploid and triploid F1 plants of
482 *Hydrangea macrophylla*, *BMC Genet.*, 20, 60.

483

484 8. Kronenberg, Z. N., Hall, R. J., Hiendleder, S., et al. 2018, FALCON-Phase: Integrating PacBio
485 and Hi-C data for phased diploid genomes, *BioRxiv*, 327064.

486

487 9. Dudchenko, O., Batra, S. S., Omer, A. D., et al. 2017, De novo assembly of the *Aedes aegypti*
488 genome using Hi-C yields chromosome-length scaffolds. *Science*, 356, 92-95.

489

490 10. Mascher, M. and Stein, N. 2014, Genetic anchoring of whole-genome shotgun assemblies,
491 *Front Genet*, 5, 208.

492

493 11. Marcais, G. and Kingsford, C. 2011, A fast, lock-free approach for efficient parallel counting
494 of occurrences of k-mers, *Bioinformatics*, 27, 764-770.

495

496 12. Kajitani, R., Toshimoto, K., Noguchi, H., et al. 2014, Efficient de novo assembly of highly
497 heterozygous genomes from whole-genome shotgun short reads, *Genome Res*, 24, 1384-1395.

498

499 13. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015,
500 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs,
501 *Bioinformatics*, 31, 3210-3212.

502

503 14. Chin, C. S., Peluso, P., Sedlazeck, F. J., et al. 2016, Phased diploid genome assembly with

504 single-molecule real-time sequencing, *Nat Methods*, 13, 1050-1054.

505

506 15. Walker, B. J., Abeel, T., Shea, T., et al. 2014, Pilon: an integrated tool for comprehensive

507 microbial variant detection and genome assembly improvement, *PLoS One*, 9, e112963.

508

509 16. Shirasawa, K., Hirakawa, H., and Isobe, S. 2016, Analytical workflow of double-digest

510 restriction site-associated DNA sequencing based on empirical and in silico optimization in

511 tomato, *DNA Res*, 23, 145-153.

512

513 17. Rastas, P. 2017, Lep-MAP3: robust linkage mapping even for low-coverage whole genome

514 sequencing data, *Bioinformatics*, 33, 3726-3732.

515

516 18. Tang, H., Zhang, X., Miao, C., et al. 2015, ALLMAPS: robust scaffold ordering based on

517 multiple maps, *Genome Biol*, 16, 3.

518

519 19. Grabherr, M. G., Haas, B. J., Yassour, M., et al. 2011, Full-length transcriptome assembly

520 from RNA-Seq data without a reference genome, *Nat Biotechnol*, 29, 644-652.

521

522 20. Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. 2006,

523 AUGUSTUS: ab initio prediction of alternative transcripts, *Nucleic Acids Res*, 34, W435-439.

524

525 21. Kent, W. J., 2002, BLAT - the BLAST-like alignment tool, *Genome Res*, 12, 656-664.

526

527 22. Ghelfi, A., Shirasawa, K., Hirakawa, H., and Isobe, S. 2019, Hayai-Annotation Plants: an

528 ultra-fast and comprehensive functional gene annotation system in plants, *Bioinformatics*, 35,
529 4427-4429.

530

531 23. Bolger, A.M., Lohse, M., and Usadel, B. 2014, Trimmomatic: a flexible trimmer for Illumina
532 sequence data, *Bioinformatics*, 30, 2114-2120.

533

534 24. Li, H., Handsaker, B., Wysoker, A., et al. 2009, The Sequence Alignment/Map format and
535 SAMtools, *Bioinformatics*, 25, 2078-2079.

536

537 25. Untergasser, A., Cutcutache, I., Koressaar, T. et al. 2012, Primer3--new capabilities and interfaces.
538 *Nucleic Acids Res.*, 40, e115.

539

540 26. Schmieder, R. and Edwards, R. 2011, Quality control and preprocessing of metagenomic
541 datasets, *Bioinformatics*, 27, 863-864.

542

543 27. Langmead, B. and Salzberg, S. L. 2012, Fast gapped-read alignment with Bowtie 2, *Nat
544 Methods*, 9, 357-359.

545

546 28. Danecek, P., Auton, A., Abecasis, G., et al. 2011, The variant call format and VCFtools,
547 *Bioinformatics*, 27, 2156-2158.

548

549 29. Jaeger, K.E., Pullen, N., Lamzin, S., Morris, R.J., and Wigge, P.A. 2013, Interlocking feedback
550 loops govern the dynamic behavior of the floral transition in *Arabidopsis*, *Plant Cell*, 25, 820–
551 833.

552

553 30. Krizek, B.A. and Fletcher, J.C. 2005, Molecular mechanisms of flower development: an
554 armchair guide, *Nat. Rev. Genet.*, 6, 688.

555

556 31. William, D.A., Su, Y., Smith, M.R., Lu, M., Baldwin, D.A., and Wagner, D. 2004, Genomic
557 identification of direct target genes of LEAFY, *Proc. Nat. Acad. Sci.*, 101, 1775–1780.

558

559 32. Okamuro, J.K., Den Boer, B.G., and Jofuku, K.D. 1993, Regulation of Arabidopsis flower
560 development, *Plant Cell*, 5, 1183-1193.

561

562 33. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. 1992, LEAFY
563 controls floral meristem identity in Arabidopsis, *Cell*, 69, 843-859.

564

565 34. Carpenter, R. and Coen, E.S. 1990, Floral homeotic mutations produced by transposon-
566 mutagenesis in *Antirrhinum majus*, *Gene. Dev.*, 4, 1483–1493.

567

568 35. Hofer, J., Turner, L., Hellens, R. et al. 1997, UNIFOLIATA regulates leaf and flower
569 morphogenesis in pea, *Curr. Biol.*, 7, 581–587.

570

571 36. Ahearn, K.P., Johnson, H.A., Weigel, D., and Wagner, D.R. 2001, NFL1, a *Nicotiana tabacum*
572 LEAFY-like gene, controls meristem initiation and floral structure, *Plant Cell Physiol.*, 42, 1130–
573 1139.

574

575 37. Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. 1989, Genes directing flower development in

576 *Arabidopsis*, *Plant Cell*, 1, 37-52.

577

578 38. Kitamura, Y., Hosokawa, M., Uemachi, T., and Yazawa, S. 2009, Selection of ABC genes for
579 candidate genes of morphological changes in hydrangea floral organs induced by phytoplasma
580 infection, *Sci. Hort.*, 122, 603-609.

581

582 39. Kramer, E.M. and Irish, V.F. 2000. Evolution of the petal and stamen development programs:
583 Evidence from comparative studies of the lower eudicots and basal angiosperms, *Int. J. Plant Sci.*, 161,
584 s29-s40

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Table 1. SNPs correlated (fitting rate more than 95%) with double flower phenotype in 12GM1 population

Scaffold	Position at Phase 0	Sequence variant		Fitting rate (%)	Frequency of double flower phenotype (double flower/all)		
		Posy Bouquet Grace	Blue Picotee manasulu		Homozygous of 'Posy Bouquet Grace'	Heterozygous	Homozygous of 'Blue Picotee Manasulu'
0008F-2	3250598	A	G	100	37/37	0/61	0/47
0008F-2	3250523	A	C	100	37/37	0/61	0/47
0008F-2	780104	C	A	100	37/37	0/60	0/48
0259F	404610	T	A	100	37/37	0/60	0/48
1207F	365533	C	T	100	38/38	0/61	0/48
1207F	372121	C	A	100	38/38	0/61	0/47
0012F	1318350	T	C	97.9	37/39	1/59	0/48
0437F	170787	G	A	97.9	36/37	1/60	1/49
0437F	180821	A	G	97.9	36/37	1/60	1/49
0994F	216439	C	T	97.9	36/37	1/60	1/49

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Table 2. SNPs correlated (fitting rate more than 95%) with double flower phenotype in KF population

Scaffold	Position at Phase 0	Sequence variant		Fitting rate (%)	Frequency of double flower phenotype (double flower/all)		
		Kirakiraboshi	Frau Yoshimi		Homozygous of 'Kirakiraboshi'	Heterozygous	Homozygous of 'Frau Yoshimi'
0577F	1204837	AG	AAACATG	98.9	22/22	0/51	1/20
3145F	55089	TA	TAA	98.9	22/22	0/51	1/20
3145F	55109	G	A	98.9	22/22	0/51	1/20
3145F	55446	G	A	98.9	22/22	0/51	1/20
0109F	868569	C	G	95.7	22/25	0/44	1/24

617

618

619

620

621

622

623

624

625

626

627

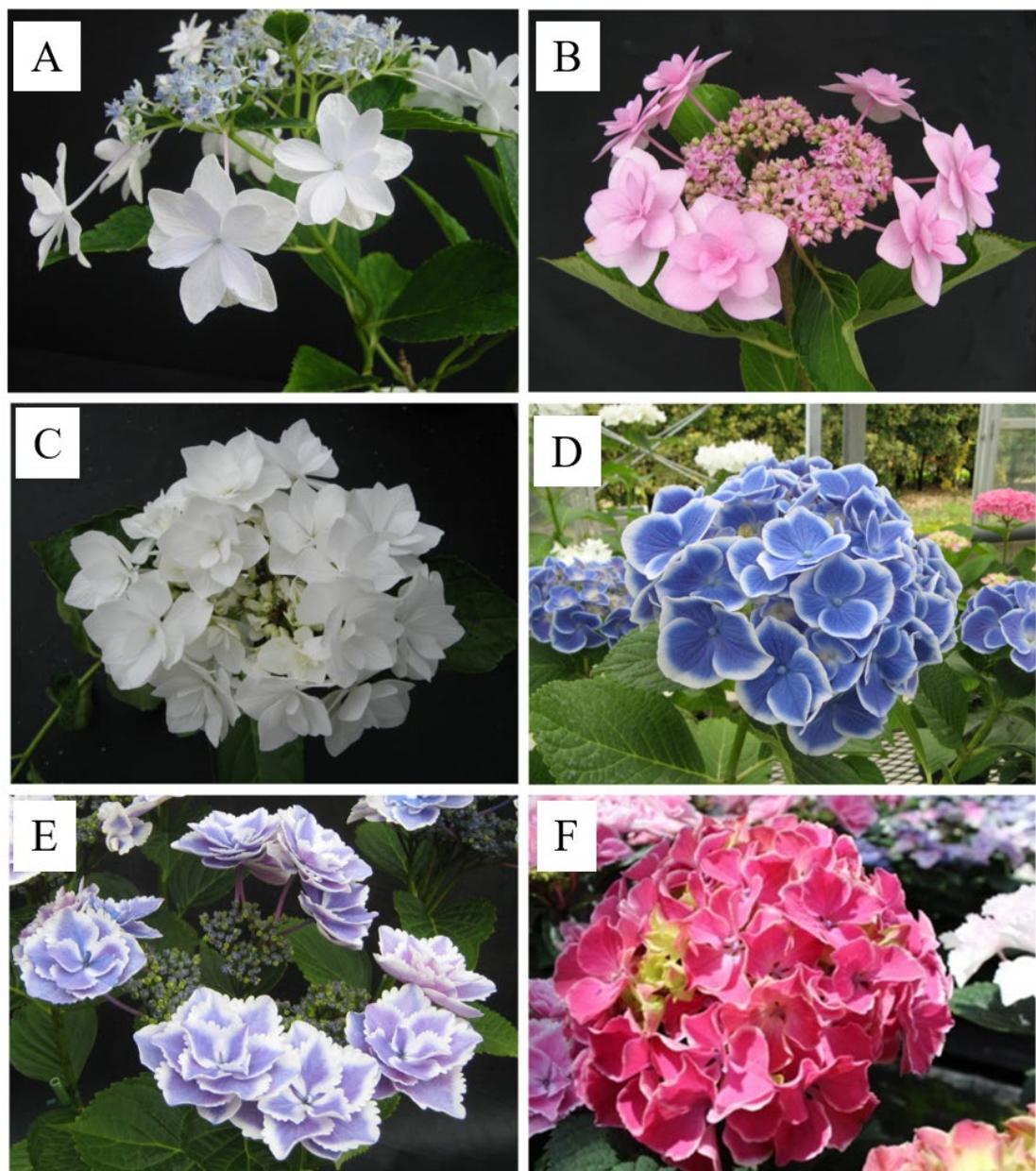
628

629

630

631

632

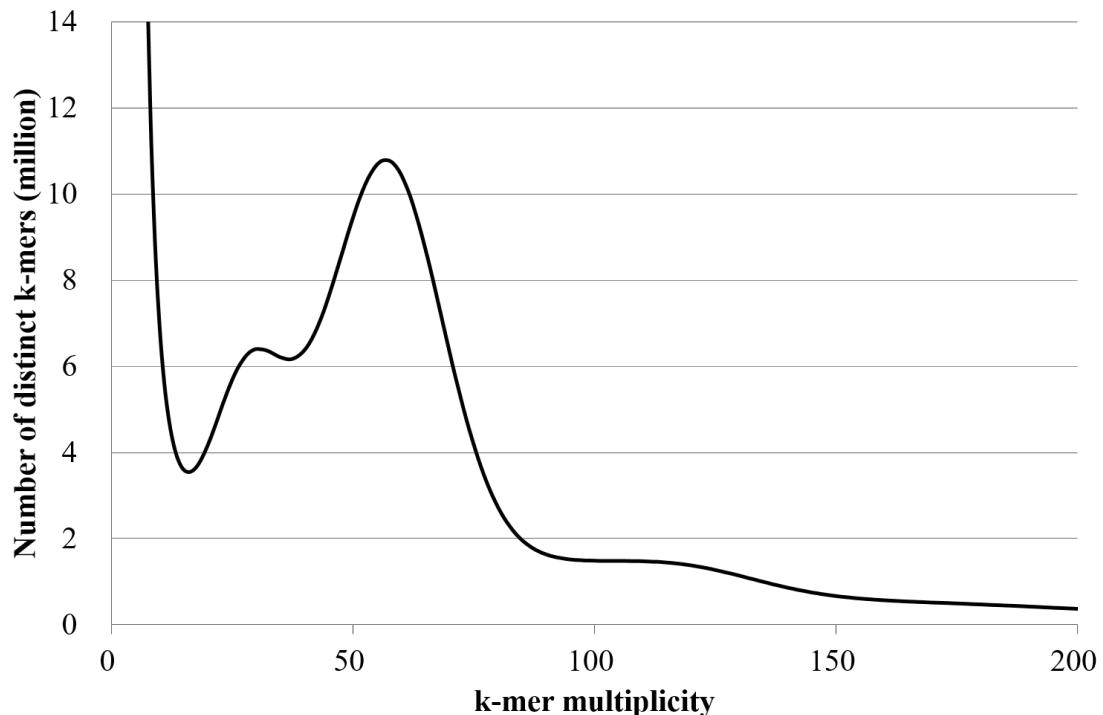

633

634

Table 3. Genotypes of DNA marker J01 and S01 in *H. macrophylla* varieties

Accession name	Phenotype	Genotype	
		J01	S01
Jogasaki	Double	117_50/117_50	250/280
Posy Bouquet Grace	Double	117_50/117_50	280/280
Izunohana	Double	117_50/117_50	250/280
Chikushinokaze	Double	117_50/117_50	250/280
Chikushinomai	Double	117_50/117_50	280/280
Chikushiruby	Double	117_50/117_50	280/280
Corsage	Double	117_50/117_50	280/280
Dance Party	Double	117_50/117_50	280/280
Fairy Eye	Double	117_50/117_50	250/280
Posy Bouquet Casey	Double	117_50/117_50	250/280
Sumidanohanabi	Double	167/167	236/236
Kirakiraboshi	Double	167/167	236/236
HK01	Double	167/167	236/236
HK02	Double	167/167	236/236
03JP1	Single	117_50/167	280/280
Amethyst	Single	167/167	250/280
Blue Picotee Manaslu	Single	167/167	280/280
Blue Sky	Single	167/167	280/280
Bodensee	Single	167/167	250/250
Chibori	Single	167/167	280/280
Furau Mariko	Single	167/167	250/250
Furau Yoshiko	Single	167/167	280/280
Furau Yoshimi	Single	167/167	250/280
Green Shadow	Single	167/167	280/280
Kanuma Blue	Single	167/167	250/280
Mrs. Kumiko	Single	167/167	280/280
Paris	Single	167/167	280/280
Peach Hime	Single	167/167	280/280
Picotee	Single	167/167	282/282
Ruby Red	Single	167/167	280/280
Shinkai	Single	167/167	280/280
Tokimeki	Single	167/167	280/282
Uzuajisai	Single	167/167	250/280

635 Genotypes shown as gray indicate homozygous of double flower allele.



636

637 Figure 1. Flower phenotypes of hydrangea accessions

638 A: 'Sumidanohanabi' (double flower). B: 'Jogasaki' (double flower). C: 'Posy Bouquet Grace' (double
639 flower). D: 'Blue Picotee Manaslu' (single flower). E: 'Kirakiraboshi' (double flower). F: 'Frau
640 Yoshimi' (single flower).

641

642

643 Figure 2. Genome size estimation for the hydrangea line ‘Aogashima-1’ with the distribution of the
644 number of distinct k -mers ($k=17$), with the given multiplicity values.

645

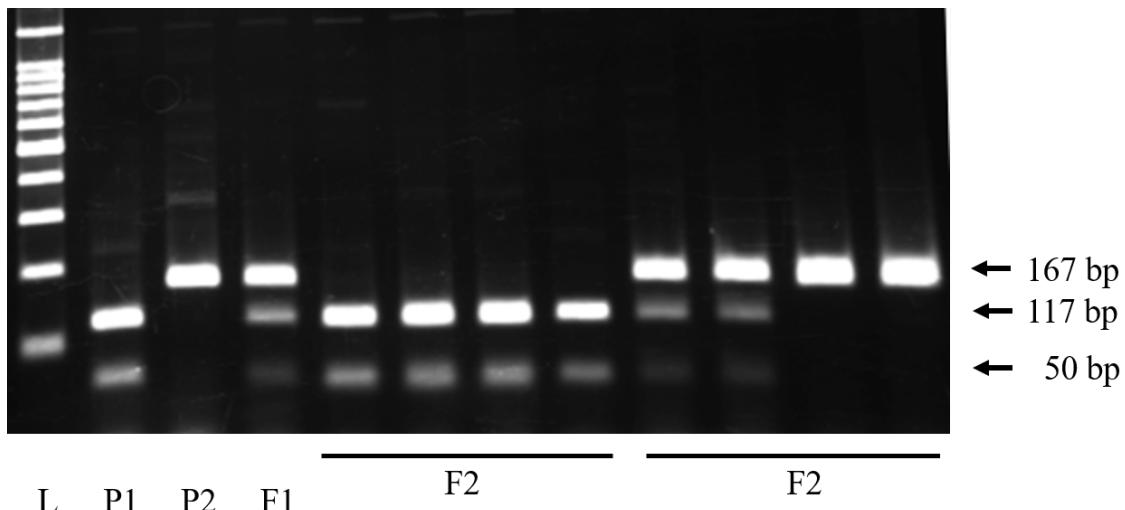
646

647

648

649

650


651

652

653

654

655

L P1 P2 F1 F2
Double flower F2
Single flower

656

657 Figure 3. Fragment pattern of J01 DNA marker

658 Dominant single flower allele is shown as undigested 167 bp fragment. Recessive double flower allele
659 is shown as digested 117 and 50 bp fragments. L: 100 bp ladder, P1: 'Posy Bouquet Grace'
660 (117_50/117_50), P2: 'Blue Picotee Manaslu' (167/167).

661

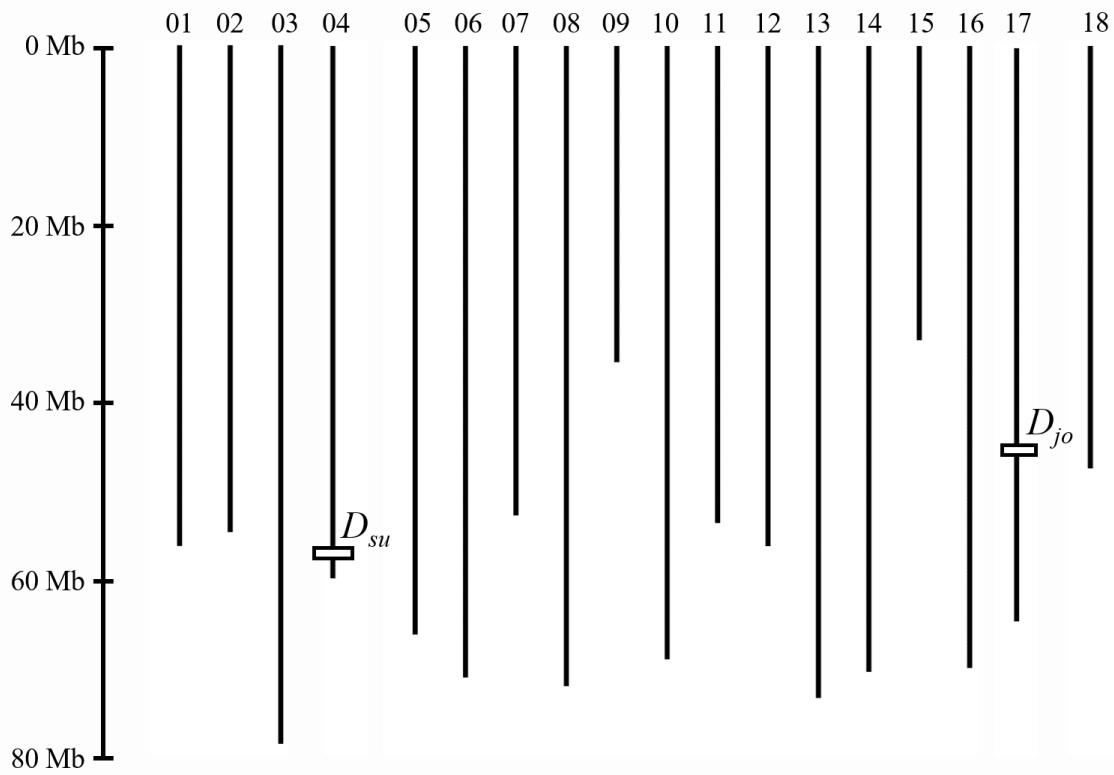
662

663

664

665

666


667

668

669

670

671

672

673 Figure 4. Schematic model of pseudomolecules

674 Double flower phenotype controlling loci D_{su} and D_{jo} are shown. D_{jo} is shown as J01 marker position

675 46,326,384 in CHR17. D_{su} is shown as tightly linked SNP at 0109F_868569, since the S01 marker

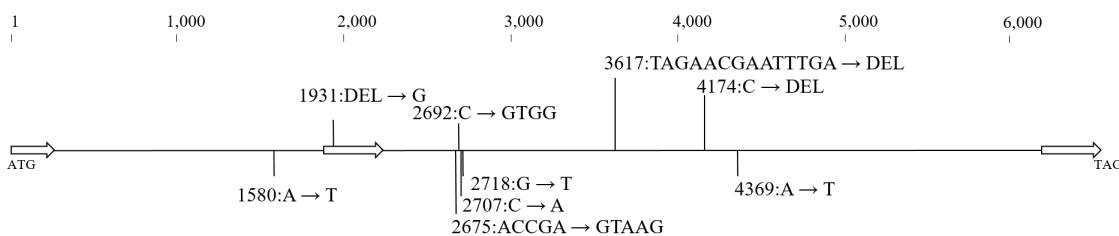
676 sequence was not on the pseudomolecule.

677

678

679

680


681

682

683

684

685

686

687 Figure 5. DNA polymorphisms in *LFY* genomic sequence

688 *LFY* sequence polymorphisms observed specifically in ‘Kirakiraboshi’ genomic sequence

689 The sequence is started from the initiation codon (ATG) at 678,200 to the termination signal (TAG) at

690 684,639 in phase 1 sequence of 0577F of HMA_r1.2. White arrows indicate coding sequences, CDS1:

691 1 to 454 bp, CDS2: 1,888 to 2,255 bp, CDS3: 6,078 to 6,440 bp. Genetic variants are shown as from

692 Hma1.2 sequence to ‘Kirakiraboshi’.

693

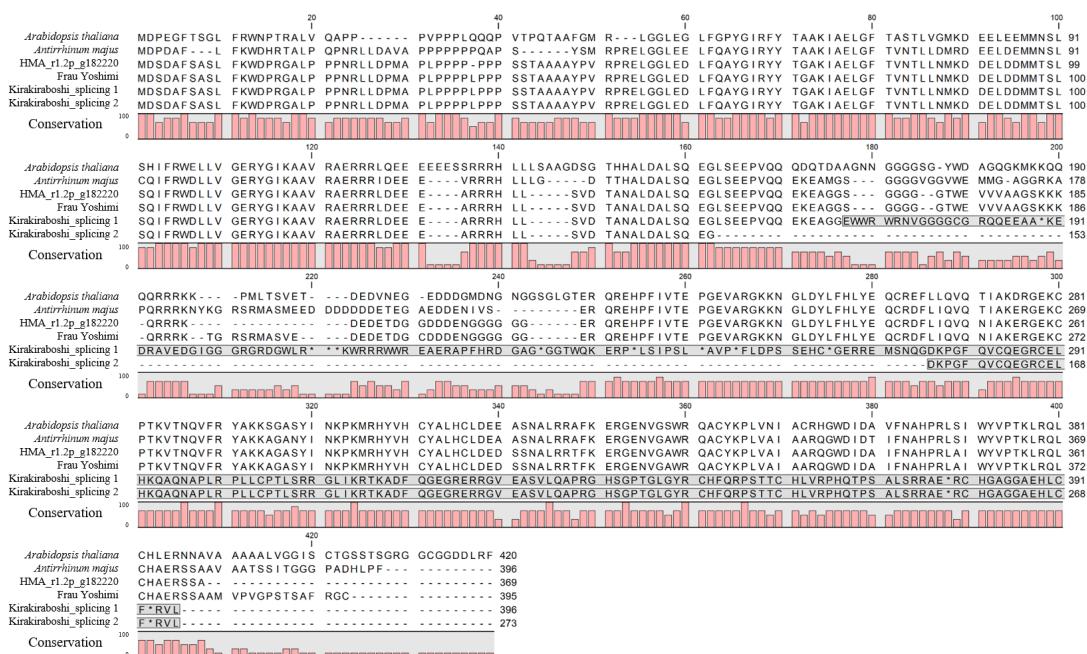
694

695

696

697

698


699

700

701

702

703

704

705 Figure 6. Alignment of LFY protein sequences

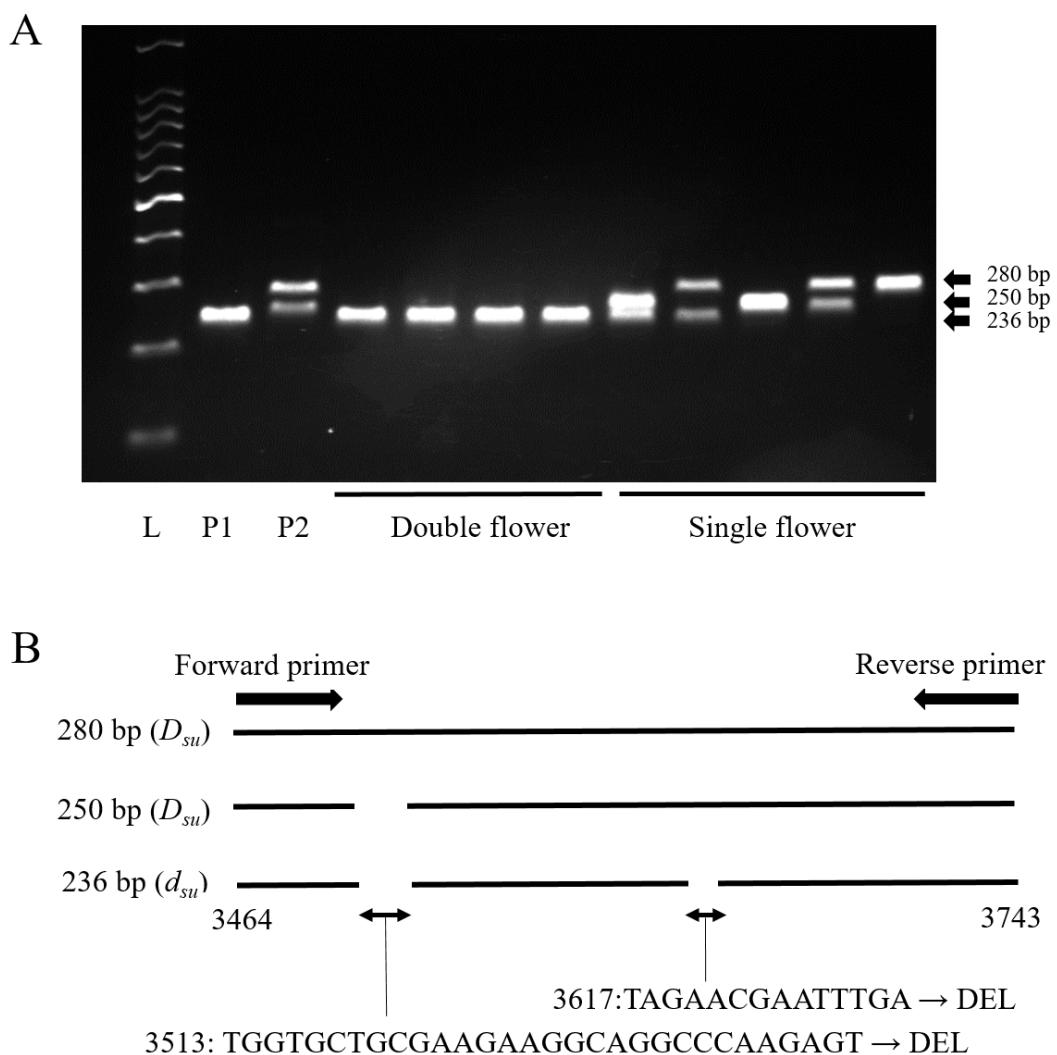
706 Amino acids with gray background show frameshifted regions. Splicing variant was observed, and
 707 both sequences showed frameshift in 'Kirakiraboshi'. *Arabidopsis thaliana*: ABE66271.1 *Antirrhinum*
 708 *majus*: AAA62574.1.

709

710

711

712


713

714

715

716

717

718

719 Figure 7. Fragment pattern of S01 DNA marker

720 A. Fragment pattern of S01 DNA marker. Dominant single flower alleles are shown as 250 bp and 280
721 bp fragments. Recessive double flower allele is shown as 236 bp fragments. L: 100 bp ladder, P1:
722 ‘Kirakiraboshi’ (236/236), P2: ‘Frau Yoshimi’ (250/280).

723 B. INDEL polymorphisms in alleles of DNA marker S01 amplified sequences. Position on schematic
724 models were the same as in Figure 5.